。他们首先对多种肿瘤相关抗原进行了筛选和鉴定,试图找到那些能够最有效激活免疫系统的抗原。
“我们发现了一种新的肿瘤相关抗原,它在多种癌症类型中都有较高的表达水平,而且在动物模型实验中,当用含有这种抗原的疫苗免疫小鼠后,小鼠体内产生了明显的免疫反应,对肿瘤细胞的生长有一定的抑制作用。”索菲亚兴奋地向大家分享着实验成果。
成员汤姆却有些担忧地说:“但是,我们还需要进一步评估这种免疫反应的持久性和特异性。毕竟,在人体中,免疫系统非常复杂,可能会存在免疫耐受或免疫逃逸等问题,导致疫苗的效果不理想。”
索菲亚点头表示同意:“你说得对,汤姆。我们接下来需要深入研究疫苗诱导的免疫记忆机制,以及如何增强免疫细胞的活性和功能,确保疫苗能够在人体内产生长期有效的免疫保护。”
本杰明的药物递送系统研究小组同样取得了重要进展。他们成功制备出了一种表面修饰有靶向分子的纳米颗粒,并将一种模型药物包裹在其中。
“通过体外细胞实验,我们发现这种纳米颗粒能够精准地被癌细胞摄取,而且药物的释放速度可以通过纳米颗粒的材料和结构进行调控。”本杰明自豪地向团队展示着实验结果。
成员艾丽问道:“那在动物体内的实验情况如何呢?我们需要确保这种药物递送系统在复杂的生物体内环境中也能正常工作,并且不会引起免疫反应或其他不良反应。”
本杰明回答:“我们正在筹备动物体内实验,已经选择了合适的肿瘤动物模型,接下来将密切观察药物在动物体内的分布、代谢以及治疗效果,同时也会对动物的生理指标进行全面监测,确保系统的安全性和有效性。”
随着研究的不断深入,各个小组都面临着一些新的挑战和问题。
艾米丽的小组在深入研究新型小分子化合物的作用机制时,发现该化合物虽然对癌细胞有抑制作用,但在高浓度下也会对正常细胞产生一定的毒性。
“我们必须找到一种方法来降低化合物对正常细胞的毒性,同时保持其对癌细胞的抑制效果。”艾米丽皱着眉头,陷入了沉思。
成员露西建议道:“我们可以尝试对化合物进行结构修