阅文小说网 > 其他类型 > 三千世界之救赎与爱恋 > 第19章 携手奋进(3/5)
地解答道:“对于复杂的函数求导,确实需要更加细心和熟练。你可以把复杂的函数拆分成几个简单的函数,分别求导后再根据求导法则进行组合。比如对于分式函数f(x)=(x2+1)\/(x-1),我们可以把它看作是两个函数的商,即u(x)=x2+1和v(x)=x-1,然后根据商的求导法则f"(x)=[u"(x)v(x)-u(x)v"(x)]\/[v(x)]2来求导。在求导过程中,要仔细运用求导公式,每一步都认真检查,多做一些练习,慢慢地就会熟练掌握了。”

    在讲解到导数这一重要章节时,古芯羽着重强调了导数的定义、几何意义以及在函数单调性、极值、最值等方面的广泛应用。她会精心挑选一些具有代表性和挑战性的导数题目,让李庭逸先尝试自己思考和解答,然后再耐心地指导他如何深入分析题目、巧妙运用导数知识进行解题。

    “你看这道题,要求函数f(x)=x3-3x2+2在区间[-1,3]上的极值点和最值。我们首先要对函数求导,得到f"(x)=3x2-6x。然后令f"(x)=0,解出可能的极值点x=0和x=2。但是这还不够,我们还需要进一步判断这些点是极大值点还是极小值点。可以通过二阶导数f""(x)=6x-6来判断,当f""(0)=-6<0时,说明x=0是极大值点;当f""(2)=6>0时,说明x=2是极小值点。最后,我们再把极值点和区间端点的值代入原函数,比较大小,就可以得到函数在区间[-1,3]上的最值了。你按照这个思路做一下这道题,看看还有哪里不明白的。”古芯羽一边在纸上详细地写下解题步骤,一边耐心地引导着李庭逸。

    李庭逸按照古芯羽的指导,认真地思考和计算着,遇到问题时,古芯羽总是能够及时地给予他帮助和启发。在古芯羽的悉心指导下,李庭逸对数学知识的理解和掌握有了显着的提高,解题能力也逐渐增强。

    在物理辅导方面,古芯羽则像一位智慧的引路人,注重培养李庭逸的物理思维方式和构建物理模型的能力。她从力学的基本概念入手,深入浅出地讲解了牛顿运动定律、动量守恒定律、能量守恒定律等核心内容。她常常会通过一些生活中常见的物理现象,如汽车的启动、刹车、碰撞等,